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ABSTRACT

Radiant exposure values are reported for sustained flaming
ignition of bdlack a-cellulose, newspaper and kraft corrugated board
exposed to constant-irradiance, thermal inputs of 30 ms duration and
longer. The radiant exposure values are shown to be approximately
proportional to the thickness of the exposed materiel and not strongly
dependent on exposure duration for pulses this brief. The significance
of sustained flaming ignition, relative to ablation effects, for pulses
of very brief duration i1s discussed.




SUMMARY

The Problem:

Both subkiloton-weapon air bursts and large-yield high-altitude
bursts generate very brief pulses of thermal radiation. While
theoretical considerations suggest that such short pulses are at least
as efficient at producing incendiary effects as the longer duration
pulses from more conventional detonations, supporting experimental
evidence 1is meagre. Therefore, the problem was to measure radiant
exposures for the sustained ignition of cellulosic kindling fuels for
pulses us short as 30 ms duration.

The Findings:

The results indicate that for very brief pulses of thermal
radfation, the radiant exposures required for ignition are not strongly
dependent on exposure duration. The results may be interpreted to
indicate that pulses generated by sub-KT air bursts and megaton high
altitude bursts are as efficient at igniting materials as the longer-
duration pulses of nominal-yield air bursts and are significantly more
efficient than megaton-yield air bursts. Further, the observation of
near-explosive ablation of organic solids exposed to extreme levels of
radiant power suggests that structural damage by impulsive loading may
be an important consequence of the brief thermal pulse from very-high-
altitude detonations of multimegaton weapons.
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REPORT OF INVESTIGATION

INTRODUCTION

The current trend in weapons technology has brought about a
reneved interest in the effects of very brief pulses of radiant
energy. Air bursts of subkiloton-yleld weapons and very-high-altitude
detonations of large-yield weapons radiate the effective portion of
their thermal energy in times of the order of tens to hundreds of
milliseconds .l 2
these innovations, it i1s necessary to extend our knowledge of ignition

In order to assess the incendiary capabilities of

behavior to shorter exposure times. This is a report of recent work
at NRDL which attempts to provide such information based on results of
exposures pushing to the limit of the carbon-arc, mechanical-shutter
system (up to 100 cal cm 2sec™t

sec ~ and down to 30 ms).

BACKGROUND

Most of the previous work done on thermal ignition has dealt with
pulse durations representative of nominal-KT to MI' range air bursts.
In the early days, a large amount of data on ignition energies vas
collected using triangular and square-wave pulses of about l-sec duration.
More recently the effort in this field has taken two directions: (1)
the detailed study of ignition behavior of an idealized kindling fuel,
a-cellulose, in terms of the parameters of the exposure (including its
duretion) and the properties of the ruelj ’“’sand (2) the direct
measurement of readiant exposure values for the ignition of specific




kindling fuels exposed to pulses accurately simulating the time-
irradiance characteristics of the thermal radiation from KT and

M air ‘ourst;za.(”7 For the most part, these studies utilized square-
vave exposures measured in seconds {seldom less than 1/2 sec) and
simulated weapon pulses of at least 2 sec duration (the time during
vhich 80 percent of the total energy is delivered).

The work at NRDL, a generalized treatment of ignition bemwi.or,3 ot
led to the following conclusions (appropriate to short pulses):

1. For pulses shorter than a certain value, vhich is proportional
to the square of the thickness of the fuel and inversely proportional to
the thermal diffusivity, the radiant exposure required for sustained
ignition is approximately constant.

2. The square-wave pulse and the air-burst-veapon pulse generate
the same ignition phenomena, only when the irradiance level of the square
vave is about one third of the peak irradiance of the weapon pulse.

3. For short pulses, the characteristic pulse of the air bdurst
is more efficient (i.e., it ignites celluloseic fuels with about 30
percent less delivered energy) than the square-vave input.

Recent studies of the pyrolysis phase of the ignition procelle"
shed some light on vhat is to be expected as exposure durations are
made increasingly shorter. It has been shc:\\:m8 that intensely irradiated
cellulose ignites, but is not necessarily sustained, vhen the temperature

*# Tvwo USNRDL technical reports will be published soon dealing vith the
kinetics and volatile products of the pyrolysis reactions in thermally
irradiated cellulose.



of the exposed surface reaches a fixed value (believed to be in excess
of 600°C) and that the incident energy required for ignition is inversely
proportional to the irradiance level and independent of the thickness.
At about this point, the solid surface commences to ablate rapidly and
shortly thereafter attains to a steady-state ablation rate and
temperature profile. The steady-state ablation rate is proportional to
the irrediance level and the total amount ablated is proportional to the
radiant exposure. Sustained ignition is thought to occur when the
temperature of the back surface of the material rises to some 200-50000.
Accordingly, the amount of unablated material remaining at the onset of
sustained ignition 1s inversely proportional to the irradiance level
and independent of the original thickness.

If the irradiance level is very high (in keeping with very short
exposure durations), the overall energy requirement of the process
described will be dependent primarily on the thickness (actually the
product of thickness and volumetric heat capacity) of the material and
independent of exposure duration. This can be seen most readily by
considering the following hypothetical example.

A dark opague cellulosic solid having typical thermal properties,
vhen exposed to 100 cal cam ~sec ™ , ignites spontaneously about 6 ms
after the exposure begins. The temperature profile at this instant
is very steep near the surface. Temperature of active pyrolysis
extend into the material less than 0.001 in.

The material has already begun to ablate, of course, and some
10 ms later the process is a steady-state one with an ablation rate
of roughly 0.001 in. every 10 ms (about 0.2 cm sec ). The stesdy-
state temperature profile, though not as steep as the transient profile,



is steep enough so that by the time the back surface temperature has
risen to a point capable of sustaining the ignition, the front surface
has moved to within a few thousandths of an inch of the back surface.

Since the amount ablated is proportional to the radiant exposure,
the radiant exposure required for sustained ignition should be pro-
portional to the original thickness less the little bit remaining. The
difference (i.e., the energy required to ablate away the remaining
material ) becomes a less significant fraction of the whole for thicker
materials at any irradiance and for higher irradiances on a material of
given thickness.

EXPERIMENTAL

The modified 36 in. paraboloidal mirror, carbon-arc souree9 vas
used to provide the radiant energy. This source is capable of delivering
irrediance levels of about 100 cal ca 2sec > uniform to 5 percent over
a circular area of 3/8 in. diameter. It is equipped with a high speed,
air-driven shutter>Ovhich has an opening time (and closing time) of 3
ms. Exposure times as short as 20 ms can occasionally be achieved by
the shutter, but 30 ms exposures are more usual. Fig. 1 is an
oscilloscopic trace of a phototube's response to & 29-ms pulse (time
measured between the half power points). For very short exposures,
the pulse is more of a trapezoidal wave than a square wvave.

To measure times of exposure as short as these, it vas necessary
t0 resort to & phototube circuit with a fast counter-timer read-out.
As shown in Fig. 2, an exposure aperture (the same one used in previous
studies) vas modified in such a way as to allov exposure of & sample
and simultaneous measurement of exposure duration. The accurecy of the



timer count was verified on several preliminary trials by comparing it
to the pulse width as measured by the timing phototube and by another
phototube which viewed the pulse through the exposure aperture. The
phototube outputs were displayed on an oscilloscope with accurately
calibrated time scale. An example of the comparison is shown in Fig.
3,

The procedure followed was the one used in earlier investigations.
The samples, black a-cellulose, nevwspaper and kraft corrugated board,
vere exposed to irradiance levels of 50,75 and 100 cal cn 2sec™. The
exposure duration vas varied, reducing it when the previous sample
ignited and increasing it wvhen a sample failed to ignite, until the
threshold value was determined as precisely as the system allows. Then

the irradiance level was measured using the Mark VI, Mod 2 ca.l.orineter.n

RESULTS

The measured exposure durations and computed radiant-exposure values
for the sustained ignition of each of the materials exposed are
listed in Table 1. Grossly considered, the radiant exposures required
for ignition are relatively constant over times of exposure of such
brevity. There i8 a small but significant (and consistent) upvard
trend toward higher irradiances and shorter exposure times. The data
are plotted in Figs. 4 and 5 to show their agreement with previous
reaulta.’

All ssmples vhich failed to sustain ignition after being given
exposures corresponding to the threshold of sustained ignition were
drestically reduced in thickness in the area exposed. As suggested



TABLE 1 SQUARE-WAVE PULSE IGNITION VALUES

Optical Thickness
Description bsorptivity {cm) (mils)
Black a-cellulose 0.9 0.012 5
No. 4090
Black Q-cellulose 0.9 017 1
No. LO9L
Black Q-cellulose 0.9 .02k 9
No. L092
Black a-cellulose 0.9 027 1
¥o. 4093
Black a-cellulose 0.9 .033 13
No.
Black G-cellulose 0.9 .05k 21
No.
Black a-celluloss 0.9 o078 n
No. 4096
Nevspaper, darkest areas 0.8 .008 3
Nevspaper, half-tone tmi 0.6 .008 3
Nevspaper, text areas 0.6 .008 3
Revspaper, unprinted 0.3%5 .008 3
Kraft fibre doard,
200-1b. corrugated 0.7 .0%2 13
first thickness only
Kraft fibre board,
200=-1b. corrugated,
total thickness

Denslt;
‘E cm” [
0.62

.65

67

.67

Irrediance

‘cll ca”2gectl )

50
5
100

50
(]
100
50
»
100

50
5
100

50
(]
100
50
¢
100
50
¢
100
50
]
100
50
”
100
50
»
100
50
(]
100

50

833

1

Duration

’! IBC!

g Uz 3us REE 3BE RS

3

110

35

Red{ant
Exposu:
‘cll cm” l
3.1
3.5
3.5
b.9
5.8
5.3
1.0
7.9
7.8
8.0
9.4
9.5
10.5
12.0
12.2

19.0
21.0
2.0

%.3
.0
38.6
2.1
2.%
2.8
3.0
3.0
3.3
%0
NS
5.0
5.5
| 991
5.5

13

=100
135




earlier, the remaining thickness was independent of the original
thickness. The remaining thickness of several such samples exposed to
100 cal cm'esec-l vas measured with a micrometer and found to be
0.002t0.0002 in. From this, knowing the exposure duration and the
original thickness, it is possible to calculate the overall ablation
rate. Table 2 illustrates how these estimates were obtained and lists
their values. Internal agreement is good and the agreement with weight
loss measurements at lower 1rrad1a.nces* is satisfactory (0.17 cm/sec
calculated from 1 mg/cal weight loss assuming a density of 0.6 gn/cma).

TABLE 2 ABLATION RATE AT 100 CAL CM 2SEC™*
Original Pinal Thickness Pate
Descripticn 'lhl(;lu)\:u 'l'htz:x)neu Abt::ed m(.:-:::t)l (c_-ﬁncd)

Black a-cellulose, Mo. 4090  0.012 0.005 0.007 35 0.2
Black a-cellulose, No. 4091 .017 « 005 .012 53 .23
Black a-cellulose, No. 4099 .00k .005 .019 78 Pk
Alack a-cellulose, No. 4093 .07 .005 .0e2 95 .23
Kack a-cellulose, No. LO%4 .033 . 005 .008 122 23
Rlack a-cellulose, No. k095 054 .005 .0hg 220 22
Black a-cellulose, No. 4096 .078 . 005 .07% 386 .19

S p——
* Unpublished data - see footnote on page 2.



DISCUSSION OF RESULTS AND CONCLUSIONS

These results completely substantiate the contention that for
very short pulses the radiant exposures required for sustained ignition
are not strongly dependent upon exposure duration. Actually, there is
a gradual increase in the threshold radiant exposure going to shorter
exposures, but this is probably less than a factor of two over an order
of magnitude change in time, i.e., Q varies as about t'l/ 4 , where Q is
radiant exposure and t is exposure duration. The reason for this upward
trend is not immediately obvious. It probably is a reflection of the
overall endothermicity of the ablation process which plays an increas-
ingly g¢reater role at the higher irradiance levels. It may be a result
of the system being overdriven, that is, the overall process becoming
reaction rate rather than heat diffusion controlled with consequent
higher than "normal" temperatures associated with each subprocess. We
are currently making surface temperature measurements as a function of

time during exposure in an attempt to answer some of these questions.

Some difficulty was encountered in detecting the onset of
sustained flaming at the 100 cal cn 2sec™t level. Transient flaming
occurs almost immediately after the exposure begins and, throughout the
exposure, profuse flames Jjet out as much as a foot in front of the exposed
surface. However, unless the exposure continues until the material is
ablated away almost completely, sustained {laming fails to occur. An
exposure lasting 10-20 ms longer does ablatc the material away
completely and, consequently, there is nothing left in the exposed area
to sustain the flame. Flames do persist in the remaining material
peripheral to the spot, but this kind of behavior is characteristic of
the spot geometry of exposure and is not generally pertinent to exposure
in the unapertured radiation field of a nuclear detonation. With still
shorter pulse of higher irradiance, there arises a serious question of



the significance of the sustained flaming threshold in an isolated fuel
element.

Of course, if the fuel element 1s partially shadowed, then it is
entirely reasonable to expect it to act just as these samples did. And,
moreover, in a fuel bed where one fuel element shades its neighbor and
is frequently located nearby in such a position that it is subsequently
bathed in the flames of its neighbor, it is reasonable to expect that
not only will flames persist, but also the interaction will markedly
reduce the required radiant exposure. Even a single fuel element might
exhibit such bvehavior if it is geometrically complex, e.g., a crumpled
sheet of newspaper.

There is another effect of exposurc of organic solids to very
high levels of radiant power. During the course of the experimental
work, a detectable mechanical impulse associated with the ablation
process was observed. At radiant power levels, an order of magnitude
greatcer than those used here, it may be possible to generate peak over-
pressures which would be large enough to cause structural damage to
buildings. It is noteworthy that this effect is entirely independent
of the thickness of the exposed material.

Both newspaper and kraft corrugated board exhibited some anomalous
behavior at the high irradiances and short exposures used. With more
conventional inputs, newspaper behaves as though it were made up of three
parts; unprinted, medium printed (text and half-tone), and dark printed
(headlines and "blacks" of pictures). The darkest parts, having the
highest absorptivity, ignite with the least radiant exposure. If they
constitute a significant area of the exposed sheet, they probably
govern the ignition of the whole newspaper. The text and half-tone
areas require more thermal input to ignite than the dark areas, and the



unprinted areas require the most. The text areas make up the bulk of
the newspaper and for this reason may be of major concern. However, at
the short exposure times of this study, the text areas acted as though
they were made up of two independent, noninteracting parts--the printed
end the unprinted areas. The printed areas burned through at radiant
exposure levels corresponding to those for sustained ignition of the
large dark areas (headlines and plctures) of the paper, but failed to
cause sustained ignition of the whole sample. It took radiant exposures
nearly as large as those required for the wiprinted borders of the
nevspaper to cause sustained ignition of the text areas. It 1s concluded
that newspaper will sustain ignition for square-wave exposures of 2 to
95 cal cm-?‘delivered in 50 to 100 ms, depending upon the amount and kind
of printing. By way of contrast, cven the darkest areas are expected
to require some 20 to 30 cel cm “to sustain fleme after exposure to &
10-MT air bure‘l:.]'2

With longer duration exposures, kraft corrugated board acts as
though it were a composite fuel whose ignition behavior is governed by
the first (exposed) layer of the corrugation. While, in this study of
short exposures, the first layer did ignite as expected, it was unable
to induce the sustained burning of the whole. It is believed, however,
that this is due to conduction of heat away from the ignited area by
the bulk of unexposed material surrounding i1t rather than a result
characteristic of short pulses. A "cardboard” box exposed over one
vwhole surface would very probably sustain ignition after exposure to a
brief pulse of some 15 to 20 cal cm 2as shown by the data in Table 1
for the ({irst thickness.

It vas stated earlier that for short exposures, the characteristic
pulse of & nuclear weapon air burst is more efficient at igniting

materials than the corresponding square-wave exposwre . While there is

10



no direct evidence along these lines for the case of very brief exposures,
it secems quite likely from the nature of the ignition curves for the two
types of input that the relationship holds here as well. Recognlizing

the current state of uncertainty about pulse shapes from high-altitude
detonations of large weapons and low-altitude detonations of sub-kiloton
wveapons, we can conclude only that radiant exposures for ignition by

such brief pulses may be less than those reported here but are probably
greater than two thirds of these values.

11
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Fig. 1 Oscilloscope Trace of 29 ms Horizontal Scale Pulse.
Horizontal Scale - 5 ms/cm.
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Fig. 2 Arrengement of Timing Phototube in Exposure Aperture
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Fig. 3 Comparison of Response of Timing Phototube to Pulse
as Viewed through Aperture.
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Director, Special Weapons Development, Hg. CONARC
Hq., Dugway Proving Ground

The Surgeon General (MEINE)

CO, Army Electronic Res,and Dev., Agency

CO, Engineer Res,and Dev, Laboratory
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Director, USACDS Nuclear Group

CO, Army Office Ordnance Research

Director, Waterways Experiment Station (Library)
Director, Operations Research Office, Bethesda

CG, Quartermaster R&D Command (CBR Liaison Officer)

CG, Mobility Command '
CG, Munitions Command

CO, Watertown Arsenal

CG, Frankford Arsenal

Commandant, U.S. Army Cormand and Cemeral Staff College
Commandant, U.S. Army Air Defense Sehool

Commandant, U. S, Army Armored Schoel

Commandant, U.S. Army Artillery & Missile School
Commandant, U, S. Army Infantry School

Superintendent, U, S, Military Academy

Commandant, U. S. Army Ordnance & Ouided Missile School
Commandant, U, S. Army Chemical School

Commandant, U, S. Army Signal School

Commandant, Engineer 3chool

Medical Field Serv.ce School (Stimson Library)

AIR _FORCE

Assistant Chief of Staff Intelligence (APCIN-3B)

CG, Aeronautical Systems Division (ASAPRD-NS)
Directorate of Civil Engineering (AFOCE-ES)
Director, USAF Project Rand

Commandant, School of Aerospace Medicine, Brooks AFB
Office of the Surgeon (SUP3.1) Strategic Air Command
Director, Air University Library, Maxwell AFB
Commander, Technical Training Wing, 3415th TIG
Commander, Electronic Systems Division (CRZT)

qu. Ue. Se Alir Force (AFTAC)

Deputy Chief of Staff, (Operations Analysis)

Deputy Chief of Staff, (War Plans Div.)

Director of Research & Development DCS/D (Ouidance & Weapons Div,)
Air Force Intelligence Center (ACS/I AFCIN-3V1)

The Surgeon General (Bio Def Br., Prov Med Div.)

CG, Strategic Air Command (OAWS)

CG, Tactical Air Command (Doc Sec Branch)

CG, Air Defense Command (ADLDC-A)

CG, Air Pr Ground Command (PGTRIL)

CG, Air Force ridge Research Center (CROQST-2)
CG, Air Force Weapons Laboratory (Tech Info Office)
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OTHER DOD ACTIVITIES

Chief, Defense Atomic Support Agency (Library)
Commander, FC/DASA, Sandia Base (FCDV)

Commander, FC/DASA, Sandia Base (FCTG5, Library)
Commander, FC/DASA, Sandia Base (FCWT)

Office of Civil Defense, Washington

Civil Defense Unit, Army Library

Defense Documentation Center

AEC Scientific Representative, France

AEC Scientific Representative, Japan

Director, Armed Forces Radiobiology Research Institute
Director, Weapons Systems Evaluation Group

Office of the US National Military Representative SHAPE
Director of Defense Res & Eng (Tech Lib)

Commandant,, Armed Forces Staff College

Los Alamos Scientific lLab (Report Librarian)

CG, Army Material Command

CO, Diamond Ordnance Fuze Lab. (Vulnerability Branch 230)
CG, U. S. Army Electronic Proving Ground (Tech Lib)

The Research & Analysis Corp

Director, Special Projects, ND. (SP-43)

€O & Dir., U. S. Naval Civil Fng Lab. (Code L31)
Director, National Aeronautics and Space Administration
Director, Advanced Research Projects Agency (DEFENDER)
Chief, Fire Protection Section, National Bureau of Standards
National Academy of Science (National Research Counecil)
DCA (NMCSSC)

AEC ACTIVITIES AND OTHERS

Aerojet General, Azusa

Aerojet General, San Ramon

Allis-Chalmers Manufacturing Co, Milwaukee
Allis-Chalmers Manufacturing Co, Schenectady
Allis-Chalmers Manufacturing Co, Washington
Allison Division - GMC

Argonne Cancer Research Hospital

Argonne National laboratory

Armour Research Foundation

Atomic Bomb Casualty Commission

Atomic Energy Commission, Washington
Atomic Energy of Canada, Limited

Atomics International

Babcock and Wilcox Co.

Battelle Memorial Institute
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Beers, Roland F. Inc,

Carnegie Institute of Technology

Chance Vought Aircraft Corporation
Chicago Patent Group (AEC)

Columbia University (Havens)

Columbia University (NY0-187)

Combustion Engineering, Inc,

Combustion Engineering, Inc. (NRD)
Defence Research Member

Du Pont Company, Aiken

Du Pont Company, Wilmington

Edgerton, Germeshausen and Grier, Inc. lLas Vegas
Franklin Institute of Pennsylvania
Fundamental Methods Association

General Atomic Division

General Dynamics-Astronautics (NASA)
General Dynamics/Convair, San Diego (BuWeps)
General Dynamics, Fort Worth

General Electric Company, Cincinnati
General Electric Company, Pleasanton
General Electric Company, Richland
General Electric Company, San Jose
General Electric Company, St. Petersburgh
General Nuclear Engineering Corporation
General Scientific Corporation

Gibbs and Cox, Inc.

Goodyear Atomic Corporation

Holmes & Narver, Inc,

Hughes Aircraft Company, Culver City

Iowa State University

Jet Propulsion Laboratory

Knolls Atomic Power Laboratory

lockheed - Georgia Company

Lockheed Missiles and Space Company (NASA)
Los Alamos Scientific Laboratory (Library)
Lovelace Foundation

Maritime Administration

Marquardt Corporation

Martin-Marietta Corporation

Massachusetts Institute of Technology
Midwestern Universities Ressarch Association
Mound Laboratory

NASA, Langley Research Center

NASA, Lewis Research Center

NASA, Scientific and Technical Information Facility
National Bureau of Standards (Library)
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National Bureau of Standards (Taylor)
National Lead Company of Ohio

Nevada Operations Office

New Brunswick Area Office

New York University (Benderson )

New York University (Richtmeyer)
Northeastern University

Nuclear Materials and Equipment Corporation
Nuclear Metals, Inc.

Office of Assistant General,General Councel for Patents
Pennsylvania State University

Phillips Petroleum Company

Power Reactor Development Company

Pratt and Whitney Aircraft Division
Princeton University (White)

Public Health Service, Las Vegas

Public Health Service, Montgomery

Public Health Service, Washington

Purdue University

Research Analysis Corporation

Rensselaer Polytechnic Institute

Sandia Corporation, Albuquerque

Sandia Corporation, Livermore

Space Technology Laboratories, Inc. (NASA)
Stanford University (SLAC)

Stevens Institute of Technology

Tennessee Valley Authority

Technical Research Group

Texas Nuclear Corporation

Union Carbide Nuclear Company (ORGDP)

Union Carbide Nuclear Company (ORNL)

Union Carbide Nuclear Company (Paducah Plant)
United Nuclear Corporation (NDA)

University of California, Los Angeles

U, of California lawrence Radiation Lab. Berkeley
U, of California lawrence Radiation Lab. livermore
University of Puerto Rico

University of Rochester (Atomic Energy Project)
University of Rochester (Marshak)
University of Washington (Gabelle)
University of Washington (Rohde)

US. Geological Survey, Denver

US. Geological Survey, Menlo Park

US. Geological Survey, Maval Weapons Plant
US. Geological Survey, Washington

Western Reserve University (Major)
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Westinghouse Bettis Atomic Power Laborato
Westinghouse Electric Corporation (Rahilly
Westinghouse Electric Corporation (NASA)

Yale University $Schulta)

Yale University (Breit)

Yankee Atomic Electric Company

Technical Information Extension, Oak Ridge

USNRDL

Technical Information Division

DISTRIBUTION DATE:
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